PHYSICS OF PLASMAS 15, 062503 (2008)

Validation in fusion research: Towards guidelines and best practices

P. W. Terry, M Greenwald,? J. N Leboeuf,® G R. McKee,* D. R. Mikkelsen,®

W. M. Nevins,® D. E. Newman,’ D. P. Stotler,® Task Group on Verification and Validation,
U S. Burning Plasma Organization, and U.S. Transport Task Force

Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA

Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, USA

JNL Scientific, Casa Grande, Arizona 85294-9695, USA

Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
Prlnceton Plasma Physics Laboratory, Princeton, New Jersey 08540, USA

lawrence Livermore National Laboratory, Livermore, California 94551, USA

Department of Physics, University of Alaska at Fairbanks, Fairbanks, Alaska 99775, USA

(Received 16 January 2008; accepted 25 April 2008; published online 6 June 2008)

Because experiment/model comparisons in magnetic confinement fusion have not yet satisfied the
requirements for validation as understood broadly, approaches to validating mathematical models
and numerical algorithms are recommended as good practices. Previously identified procedures,
such as, verification, qualification, and analysis of errors from uncertainties and deficiencies, remain
important. However, particular challenges intrinsic to fusion plasmas and physical measurement
therein lead to identification of new or less familiar concepts that are also critical in validation.
These include the primacy hierarchy, which tracks the integration of measurable quantities, and
sensitivity analysis, which assesses how model output is apportioned to different sources of
variation. The use of validation metrics for individual measurements is extended to multiple
measurements, with provisions for the primacy hierarchy and sensitivity. This composite validation
metric is essential for quantitatively evaluating comparisons with experiments. To mount successful

and credible validation in magnetic fusion, a new culture of validation is envisaged.
© 2008 American Institute of Physics. [DOI: 10.1063/1.2928909]

I. INTRODUCTION

Predictive capability has emerged as a key goal in mag-
netic confinement fusion research, not just for its special
value in designing and operating ever costlier and more com-
plex devices such as ITER (Ref. 1) and DEMO,’ but, more
generally, because its attainment would signify the quantita-
tive maturity in understanding and modeling that is required
for success in fusion. Genuine predictive capability will re-
quire computational models that have been shown to be valid
under widely accepted standards. This paper identifies and
explores issues that must be confronted in demonstrating the
validity of computational models in fusion. It provides a
starting point on the path toward a community consensus on
what validity means by proposing guidelines and good prac-
tices in validation of computational models.

Verification and Validation (V&V) have been formulated
in related scientific communities, such as, fluid dynamics, to
codify a certification procedure necessary for predictive
capability.3 Verification is the process by which it is deter-
mined that a numerical algorithm correctly solves a math-
ematical model within a set of specified, predetermined tol-
erances. Validation is the process by which it is determined
that the mathematical model faithfully represents stipulated
physical processes, again within prescribed limits. To a lim-
ited extent there is an emerging culture of verification in the
U.S. fusion program > These and other good faith verifica-
tion efforts need to be pursued more widely, and extended to
methodologies formulated for verification by experts in com-
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puter sciences and elsewhere, with careful and accessible
documentation becoming the norm. With respect to valida-
tion, comparisons between models and fusion experiment
have long been pursued. There have been wide variations in
how well these exercises address uncertainties, subtleties,
and potential faults in the comparison process, leading to
wide variations in the credibility of the outcome. Generally,
comparisons across this spectrum have been self-described
as validation. However, validation as defined above, and as a
route to predictive capability, requires a rigor coupled with a
quantifiable rating of validation from a widely accepted sys-
tem. The high standards this implies involve, at the mini-
mum, quantitative assessments of discrepancies between
model and experiment, their mapping into a set of tolerances
applied to prediction, and an informed community consensus
on standards and procedures. This, in turn, requires a broad
understanding of faults and pitfalls in the comparison
process. Because prescriptions and templates for verification
have been formulated in considerable detail, whereas
validation is less well prescribed, this paper will focus on
validation.

It may not be tenable for the fusion community to pursue
V&V exactly as envisioned in other communities. While ef-
forts in allied fields serve as critical guideposts, certain reali-
ties in fusion research have to be confronted and accommo-
dated. These include budget and manpower constraints that
do not allow the same magnitude of effort. They include
special complexities of modeling that extend beyond the
usual problems in turbulence of nonlinearity, multiple scales,
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and geometry. For example, the dynamics of fusion plasmas
is not described by a single model, but requires complex
integration of a series of distinct, physically realizable mod-
els with vastly different scales, representations of plasma
physics, and computational requirements. Another challenge
includes the routine occurrence of multiple equilibrium
states, bifurcation dynamics, and extreme sensitivity from
features like strong transport near critical gradients. The fu-
sion plasma environment also poses severe problems for
measurement in terms of limited diagnostic capability (many
crucial quantities cannot be measured), limited diagnostic ac-
cess, and the necessity of applying significant a priori mod-
eling to interpret the measurements. Finally, predictive fu-
sion codes will have their own set of uses to which fusion
V&V will have to be adapted.

This paper is organized as follows: Sec. II discusses
problems that have arisen in comparisons of fusion experi-
ments and models. Validation approaches that address and
help resolve these problems are discussed in Sec. III. These
are succinctly embodied in the key concepts of Sec. III A.
Subsequent subsections expand on these concepts to as-
semble a methodology containing both standard elements of
V&V and new, more embryonic directions. We explain in
Sec. IV the type of collective effort required of all parts of
the fusion community for model validation to be effective.
Section V contains conclusions and four steps that will im-
prove validation efforts and help spur further development.
Appendices contain a glossary of terms for V&V and details
on validation metrics.

Il. FUSION MODELING ISSUES

It is not clear how successful fusion modeling will be in
overcoming all of the challenges listed in the previous sec-
tion. On the time scales required to design and produce new
machines the success may be partial. It is also anticipated
that on ITER, reduced simulation codes will be used for shot
planning and analysis, requiring a tradeoff between the de-
mands for physics fidelity and fast turnaround time. There-
fore codes are validated as representing physical behavior,
but within tolerances usually quantified in something called a
validation metric. The tolerances are not to be set a priori as
a design parameter, but a posteriori, as a quality grade
through the process of comparison with experiment. The
challenges listed above impact the fidelity of models. Where
there is significant uncertainty in experimental measure-
ments, tolerances will be larger. Likewise where there are
model limitations from the standpoint of physics included,
resolution achieved, or other factors, larger tolerances will
reflect the limitation.

Present day efforts at comparison of models and experi-
ment reveal a number of problems intrinsic to the process. In
some sense, validation can be couched as the procedure by
which these problems are met, and their consequences are
quantitatively assessed and mapped onto tolerances. We
briefly present some of these problems, and then recommend
approaches for meeting them.

eDiscrepancies between model and experiment: Dis-
agreement between the results of modeling and experimental
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measurement must be characterized, understood, and ulti-
mately quantified. What are the sources of disagreement?
Which matters more or less? Is the understanding of discrep-
ancies consistent with trends where agreement becomes bet-
ter or worse? How good is “good” when it comes to agree-
ment? The widely followed practice of comparing a model
result with experiment and declaring the agreement “reason-
able” or not, does not constitute validation because it is a
qualitative assessment.

* Fortuitous agreement: Given the complexity of plasma
dynamics and models, the possibility that good agreement
may be fortuitous must be confronted. In cases where agree-
ment has been reached by successively improving the real-
ism of the model, will the addition of other effects thought to
be less important destroy the agreement? Are there other
quantities to compare which may show the agreement to be
fortuitous or not particularly meaningful?

* Sensitivity: Plasmas are highly nonlinear. The result is
that certain quantities are very sensitive to changes in the
parameters on which they depend. Agreement in quantities
that are very sensitive may be difficult to achieve, because
small discrepancies in underlying parameters translate into
large uncertainties in the sensitive quantity. Quantities that
are not sensitive may not be able to discriminate between
physically different models.

* Differentiating between models: Certain comparisons
may have limited value in validation because physically dif-
ferent models (producing different outcomes for other com-
parisons) tend to produce equally good agreement within
some set of tolerances. It is important to determine what
quantities lead to these kinds of comparisons, so that valida-
tion is not based solely on them.

* Optimizing comparisons: Certain quantities are sensi-
tive, while others lead to comparisons that do not discrimi-
nate well. But quantities for comparison are also affected by
diagnostic and computational limitations. These factors must
be assessed in some fashion to optimize comparisons.

lll. VALIDATION APPROACHES

The difficulties discussed above can be attacked through
a series of approaches and validation activities presented in
this section. Figure 1 identifies these approaches and indi-
cates with a check mark which approaches deal with the
difficulties just listed. Clearly, these approaches are cross
cutting. To differing extents all deal with the problems en-
countered in making meaningful comparisons with experi-
ment. In discussing these approaches it will become clearer
how each addresses the difficulties listed in Fig. 1. We as-
sume that these validation approaches are applied to codes
that have undergone a thorough, documented verification
process.

Many of these approaches and ancillary activities have
been defined and incorporated into glossaries. Glossaries
have been drafted by the Society for Computer Simulation,
the Institute of Electrical and Electronics Engineers, the
Defense Modeling and Simulation Organization, and the
American Institute of Aeronautics and Astronautics. These
are discussed in Sec. 2.1 of Ref. 3. A glossary adapted for
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Scorecard of validation approaches for resolving common challenges

Qualification | Error and Primacy Sensitivity Validation
uncertainty | Hierarchy analysis metric
analysis

Discrepancies \/ / \/ \/
between model

and experiment
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agreement

Discriminating \/ \/ \/ \/
between

models

Optimizing ‘/ \/ \/ \/ \/
comparisons

FIG. 1. Scorecard of validation approaches for resolving common chal-
lenges. A check mark indicates which approaches address common
challenges.

fusion simulation, and somewhat oriented toward verifica-
tion, has been formulated by the European Fusion Develop-
ment Agreement (EFDA) Task Force on Integrated Tokamak
Modelling.6 In considering validation for fusion modeling,
we have found it desirable to introduce some new concepts.
Our glossary is given in Appendix A. We introduce here
those concepts most central to a discussion of approaches to
validation in fusion systems.

A. Key concepts

Validation: The process of determining the degree to
which a model is an accurate representation of the real world
from the perspective of the intended uses of the model; an
exercise in physics.

Qualification: A theoretical specification of the expected
domain of applicability of a conceptual model and/or of ap-
proximations made in its derivation.

Uncertainty: A potential error in any phase or activity of
the modeling process that is due to lack of knowledge. Un-
certainties can arise in the models themselves and/or in the
experimental data used for validation.

Deficiency: A recognizable error in any phase or activity
of modeling and simulation that is not due to lack of knowl-
edge. Errors may be introduced by insufficient resolution in a
simulation, programming bugs in the code, or physics ex-
cluded from the model.

Sensitivity analysis: The study of how the variation in
the output of a model (numerical or otherwise) can be appor-
tioned, qualitatively or quantitatively, to different sources of
variation.

Primacy hierarchy: Ranking of a measurable quantity in
terms of the extent to which other effects integrate to set the
value of the quantity. Assesses ability of measurement to
discriminate between different nonvalidated models.

Validation metric: A formula for objectively quantifying
a comparison between a simulation result and experimental
data. The metric may take into account errors and uncertain-
ties in both sets of data as well as other factors such as the
primacy of the quantities being compared.
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We now describe how these concepts are utilized in ap-
proaches to validation.

B. Qualification

Qualification is essential in validation. It should not be
overlooked even though a model might be well established.
For example, the success of MHD in equilibrium modeling
supports a widely held perception that the model is predic-
tive. However, this only applies to equilibrium modeling. If
there are bifurcations, and MHD is used to model the tran-
sients, the model must undergo qualification for that applica-
tion, a process that is far from trivial. Similarly, examples of
model validation for energetic particle physics can be found
for cases with trace levels of alpha particles or lower energy
beam particles. To validate such models at higher alpha par-
ticle fractions or beam power levels requires a qualification
process that takes note of such limitations, determines
whether they are intrinsic to the regime of validity of the
model, and traces how model fidelity responds quantitatively
to the desired parameter changes. This includes identifying
the extent to which behavior and regimes are linear or non-
linear, and how the validated regimes relate to the regimes
that may arise in future experiments. Therefore, while quali-
fication is characterized as a theoretical exercise, it must be
carried out in the context of the experimental plasma condi-
tions under which the model will be applied. Qualification
must lead to a quantitative rating of the applicability of a
model given its theoretical constraints and the parameters of
the experiment to which it will be applied. This may be
straightforward if all experimental parameters lie comfort-
ably within the domain of applicability. However, if param-
eters lie close to the edge of applicability, nonlinearity in
combining the quantitative contributions of neglected effects
makes this a nontrivial exercise. Assessing these matters
quantitatively is part of setting up a validation metric, as
described below.

C. Errors: Uncertainties and deficiencies

An assessment of uncertainty in experiment is often de-
noted with error bars. Error bars frequently reflect only sta-
tistical uncertainty. Nonetheless it is important to document
and describe how error bars are obtained. Ratings of statisti-
cal error rely on statistical assumptions whose validity in
turn must be established. For example, sampling restrictions
associated with diagnostic limitations may favor Gaussian
statistics. On the other hand, uncertainties due to dynamical
chaos can be non-Gaussian. Such issues may affect compari-
sons. Systematic error is incorporated less often into error
bars, yet it can lead to significant discrepancies with models.
Sources of systematic error include modeling errors and un-
certainties in equilibrium solvers, lack of precision in
equilibrium-solver inputs, limitations in diagnostic sensitiv-
ity and resolution, deconvolution of line-integrated measure-
ments, modeling inherent in diagnostic signal interpretation
(e.g., inferring density from ion saturation current in Lang-
muir probes), and additional processing of diagnostic signals
in analysis. Systematic error is obviously more difficult to
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Primacy hierarchy: Particle Transport Measurement

Primacy level:
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FIG. 2. (Color online) Primacy hierarchy for particle transport. Rounded
boxes between levels identify operations performed in going to the higher
level, as described in the text, or quantities that characterize the combination
of the lower level components.

rate numerically than statistical uncertainty, however it must
be undertaken and folded into a validation metric.

Uncertainty and deficiencies in the modeling process
arise from a variety of sources. These include imperfect map-
pings of magnetic topology to laboratory coordinates and
restrictions on equilibrium specification and its modeling.
There are generally limitations arising from physical pro-
cesses excluded, such as kinetic effects, fluctuation fields,
inhomogeneities, and boundary physics. Uncertainties arise
from artificial constraints, including fixed profiles, flux tubes,
and missing or imprecise experimental data for input param-
eters. Some uncertainty is intrinsic to the algorithm that
implements the conceptual model. This includes limitations
on resolution, both temporal and spatial, integration time,
and artificial numerical dissipation. Once uncertainties in
modeling are assessed, they should be tabulated and dis-
played as expected deviations from computed values at
specified confidence levels. Section III F gives examples.

It may be possible to circumvent certain limitations and
uncertainties in measurement by use of synthetic diagnostics.
Direct comparison of the experimental measurements with
processed simulation output may be a useful approach par-
ticularly when inversion of experimental measurements to
produce local quantities of interest is not possible or accu-
rate. This situation can arise when there is limited spatial
coverage or averaging or because the inversion process is
mathematically ill-conditioned. Synthetic diagnostics incor-
porate the experimental spatial and temporal transfer func-
tions, mimic diagnostic uncertainties arising from sensitivity
and resolution limitations, and replicate plasma modeling in-
herent in diagnostic signal interpretation.7 However, syn-
thetic diagnostics are themselves models, and need valida-
tion. Validation of synthetic diagnostics is not a trivial issue
and must not be overlooked, whether aspects are done inde-
pendently (e.g., for calibration), or whether validation is
done integrally for both the measuring diagnostics and the
model whose results are being measured. Moreover, because
synthetic diagnostics integrate and process their input data,
they may increase the tendency for fortuitous agreement or
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Primacy hierarchy: Wavenumber Spectrum Measurement

Primacy level:
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Ay
| | Correlation
Spectrum length
a_g

FIG. 3. (Color online) Primacy hierarchy for power density spectrum.

make it difficult to differentiate between models. However,
they can be valuable in quantifying experimental uncertain-
ties for inclusion in validation metrics.

D. Primacy hierarchy

Not all experimentally measured quantities provide
equally meaningful comparisons with models. This is inher-
ent in the issues presented in Sec. II and the errors and un-
certainties described above. One way of rating measured
quantities for comparisons is the primacy hierarchy. The pri-
macy hierarchy tracks how measured quantities integrate or
combine to produce other measured quantities. A quantity is
assigned a lower primacy level if its measurement integrates
fewer quantities. Note that, as described, the primacy hierar-
chy is a property of the way a quantity is measured, not the
quantity itself. To illustrate a primacy hierarchy, consider
particle transport measurements using probes. There are a
variety of subtleties that might be delineated, but for the sake
of argument, let us take Fourier amplitudes of density and
potential as primary quantities. Let us further assume that we
have a direct measurement technique for wavenumber, put-
ting that at the lowest level as well. Then the remaining
quantities required to describe particle transport fall on the
hierarchy as follows: The E X B flow is a secondary quantity
combining wavenumber and potential. (In real space it is a
derivative involving the difference of two potential measure-
ments across some displacement, but remains at the second
level.) The flow and density combine to produce a tertiary
quantity, the particle flux. The combination involves opera-
tions like a sum over wavenumber, and depends on cross
phase and coherency. A fourth level is the diffusivity, which
combines the flux and a lower level quantity, the profile. The
diffusivity is frequently the basis for comparisons. It inte-
grates three lower levels and any uncertainties or deficiencies
present in the measurements. It also requires the application
of Fick’s law, an approximate transport model whose linear
relation between flux and gradient is not generally an accu-
rate representation of transport dynamics in a nonlinear me-
dium. Consequently, comparisons of diffusivities are not es-
pecially useful for validation. A graphical representation of
the particle transport hierarchy as described above is given in
Fig. 2. Note that if a quantity like wavenumber is not directly
measured, but processed from lower level measurements, as
it would be in real space, the hierarchy can be modified to
reflect such relationships. A second example, given in Fig. 3,
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FIG. 4. Comparison of model results with experiment at two levels in the primacy hierarchy. The density fluctuation has a lower primacy level than the flux,
but its discrepancy with experiment is larger. The flux also illustrates the strong sensitivity of transport to the gradient scale length, showing a factor of 5

increase in the flux for a 60% increase in gradient scale length.

is drawn from wavenumber spectrum measurements. It as-
signs level 1 to fluctuations; level 2 to the spectrum, which is
a correlation of the fluctuations; and level 3 to the correlation
length, which in the presence of noise is extracted by taking
a moment of the spectrum. Similar hierarchies and corre-
sponding operations arise in either wavenumber or configu-
ration space. For example, in particle transport, the flow as a
derivative of the potential is a second-level quantity. The flux
is at the third level because it combines density and flow, and
the operations required to construct the correlation (multipli-
cation, spatial integration) produce analogs to the wavenum-
ber sum, coherency, and cross phase. The above illustrations
are not meant to be prescriptive. The measurements ulti-
mately prescribe the hierarchy. How measurements are
made, and how they integrate other measured quantities, will
vary with experiment and diagnostic techniques.

The closeness of agreement between an experiment and
a model is generally a function of primacy level. This is
illustrated in Fig. 4, which shows comparisons of a gyroki-
netic model and experiment for level-1 density fluctuations
[Fig. 4(a)] and the level-3 flux [Fig. 4(b)].* The code and
experiment appear to be in better agreement for the higher
level quantity, presumably because deficiencies and uncer-
tainties partially cancel in the integration from level 1 to
level 3. This particular trend with primacy level is common
but not universal. In certain measurements the integration
could amplify the disagreement as primacy level increases.
Given such variations, it is not desirable to base validation
comparisons on a single primacy level. Indeed, the issues of
integration and sensitivity (which is described in the next
section), make it important to use multiple measures both
within a primacy level and across primacy levels.

For example, a comparison at a single primacy level that
tends to optimize agreement between models and experiment
may not be able to differentiate between models with sub-
stantially different physics (and substantially larger discrep-
ancies at other levels). This is evident in comparisons of
wavenumber spectra made over the years. Fairly simple drift
wave theory produced good agreement with ATC (Ref. 9)
fluctuation data in 1976."® A decade later a more sophisti-
cated analytic theory achieved similarly good agreement

with PRETEXT (Ref. 11) data.'® In 2006 a gyrokinetic code,
far more advanced than either analytic theory, again achieved
good agreement with Alcator C-Mod (Ref. 13) data.'* These
widely varying models in physics content and realism per-
form similarly in comparisons with measured wavenumber
spectra, suggesting that comparisons with wavenumber spec-
tra do not provide stringent model validation. Indeed the col-
lisional drift wave model of Ref. 12 could not satisfactorily
model other aspects of the fluctuation physics even though it
produced good agreement with the wavenumber spectrum.
Thus, meaningful validation will require quantitative knowl-
edge of trends across the primacy hierarchy, as garnered
from comparisons at multiple levels. As part of a validation
metric, ratings should be assigned to comparisons at different
levels in the hierarchy, as described below in Sec. III F 3.

E. Sensitivity analysis

Magnetically confined plasmas are nonlinear and com-
plex, producing sensitivities in parameters, scalings, and dy-
namics. These may be either known or unknown. Known
examples are bifurcations between disparate equilibria con-
trolled by small variations of critical parameters, and stiff-
ness in profiles whereby small changes in gradients lead to
large changes in fluctuation levels and transport fluxes. Not
all quantities are equally sensitive. Sensitivities pose chal-
lenges for validation that must be understood and confronted.
Sensitivities amplify uncertainties and deficiencies, poten-
tially leading to large discrepancies in comparisons between
model and experiment. A model validated with tight agree-
ment in nonsensitive comparisons could have large discrep-
ancies in a sensitive comparison. To understand the uncer-
tainties in a given computational result, one must understand
how sensitive those results are to the various input param-
eters. This is particularly important to investigate over the
range of intrinsic uncertainty in those input parameters.

Comparative studies of turbulent transport find a signifi-
cant sensitivity of fluctuation levels and transport fluxes to
profiles. This sensitivity has a robust theoretical basis in the
strong increase of transport as a function of gradient scale
length above a critical value. It is evident in Fig. 4(b), which
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shows fluxes rising by a factor of 4-5 for a 60% increase in
the gradient scale length parameter.8 This sensitivity was
cited as the primary reason for the large discrepancy between
experiment and model in the comparisons of Fig. 4(b).

It is possible to construct or find measurables or func-
tions of measurables in which the sensitivities apparently
cancel out or are not present. Several such quantities have
been proposed. An example of the former is the ratio of two
diffusivities, such as, an ion heat diffusivity to an electron
heat diffusivity. Examples of the latter include quantities like
the wavenumber of the spectrum peak and the radial corre-
lation length. Finding such quantities is not likely, in itself, to
provide a solution to the sensitivity problem, although it may
enable falsification of the hypothesis that a model is valid
even when strong sensitivities are involved. For example the
ratio of electron and ion heat fluxes Q,/Q; is often insensi-
tive to variations in the temperature gradient scale length Ly.
If a model robustly fails to predict Q,/Q; it can be assumed
that the model is not valid for individual heat fluxes, even
when there is insufficient precision to determine whether in-
dividual heat fluxes are incorrect. However, the converse
does not hold, i.e., success in predicting Q,/Q; does not pro-
vide validation for the modeling of individual heat fluxes.
This difficulty impacts the capacity to differentiate between
different models. Measurables that have some dependence on
a sensitive parameter, but reduce the sensitivity, are likely to
also reduce the capacity to differentiate between different
models. Radial correlations apparently have this property, as
illustrated by comparisons with experiment and two signifi-
cantly different models, both of which do quite well in the
comparison.15 Sensitivity and primacy hierarchy can be
coupled. Measurables that reduce sensitivity may be at a
higher primacy level. This is true of the ratio of heat diffu-
sivities. It combines numerator and denominator, raising the
primacy level and, in a fairly obvious way, allowing cancel-
lation of sensitivities, deficiencies, and uncertainties to pro-
duce closer agreement. It also introduces the approximate
model assumption of diffusive transport.

The above difficulties make it necessary to thoroughly
understand and quantify the sensitivities of the model. This is
accomplished with sensitivity analysis, which is performed
numerically but is informed in key ways with theory input.
Theory creates the conceptual framework for describing the
physics being modeled, identifying features of the dynamical
landscape, and the workings of the underlying processes.
Theory provides qualitative and quantitative descriptions in
terms of basic scalings, identification of crucial parameters,
characterization of sensitivities, and the morphology of dy-
namical behavior. An example is the effect of EX B shear,
which was posited theoretically, verified experimentally, and
then shown to be important for inclusion in models for re-
ducing discrepancies with experiment (but not removing
them altogether). Using theory for guidance, numerical ap-
proaches map out, characterize, and quantify all of the sen-
sitivities of the model. This analysis determines if there are
low-sensitivity measurables that are capable of differentiat-
ing between different models. It tests whether there are func-
tions of measurables that reduce sensitivity without reducing
deficiencies and uncertainties. Thorough sensitivity analysis
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may conclude that reduction of discrepancies in compared
measurables may require reduction of uncertainties in source
parameters.

F. Validation metric

Once a model is encoded, it is a numerical exercise to
compute measurable quantities and graphically compare
them to experimental observations. A straightforward assess-
ment of the comparison inevitably results in qualitative judg-
ments such as “pretty good agreement” or “significant differ-
ences,” etc. This kind of evaluation has been common in
comparisons of fusion models and experiments. While this
qualitative approach is suitable for testing models during the
early stages of model development or demonstrating general
trends, validating a model for predictive applications calls
for a more quantitative, objective, and systematic approach.
The evaluation must yield a numerical rating of the extent to
which the model is validated within a context that assigns a
widely understood meaning to that rating. This is accom-
plished with a validation metric. For example, in the context
of prediction, a validation metric might yield a declaration of
the maximum differences expected or possible between a
prediction and reality in a given measurable quantity for
some specified confidence level. To make this statement, one
must anticipate the variations expected in the simulation due
to changes in the model input parameters that are possible
within the uncertainties and deficiencies, both of model and
experiment. To provide meaning to the variations character-
istic of a given measurable, it is necessary to know how
measures perform across the primacy hierarchy and sensitiv-
ity landscape.

The validation metric could incorporate quantitative in-
formation about (1) approximations and validity regimes
identified in the qualification process; (2) uncertainties and
deficiencies in experiment, including statistical and system-
atic error; (3) uncertainties and deficiencies in modeling; (4)
location of measured quantities within the primacy hierar-
chy; and (5) model sensitivity. Generally speaking, (1)—(3)
represent the tolerances intrinsic to a comparison, whereas
(4)—(5) track the significance and meaning of comparison
results. There is no standardized or algorithmic procedure for
quantifying these individual assessments. Moreover, valida-
tion is a physics problem rather than a mathematical prob-
lem, and we do not yet understand all of the physics. There-
fore, there is not yet a general prescription for combining
individual assessments into a validation metric. These opera-
tions will have to be defined through a collective develop-
ment process subject to the usual trial and error of scientific
endeavor. To begin this process we offer some ideas for
illustration.

1. Simple metrics

General recommendations and approaches can be made,
including those that leverage off practices established in
other fields. For example, the relatively simple validation
metric described by Ref. 16 is a natural step beyond the
familiar, qualitative comparison. The key requirement for
evaluating this metric is the availability of multiple experi-
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FIG. 5. (Color online) Generic depiction of a comparison of experimental

and simulation data with =90% confidence intervals computed for the
former and an uncertainty of o,, shown for the latter.

ments for each condition being examined (labeled here by x).
For illustrative purposes, suppose that experiments have
been performed over a range of x, with two or more experi-
ments done at a given x. Simulations based on those experi-
ments have also been run over this same range of x. The
availability of multiple experiments at each x allows mean
values and confidence intervals of the observable quantity
3,(x) to be computed directly from the data. This approach is
preferable to the conventional “error bar” approach since the
latter is inevitably based on arguments and models that them-
selves must be tested before they can be considered reliable.

The actual validation metric in this example is the abso-
lute value of the difference between an experimental mean
and simulation data, averaged over the distribution of the
latter (see Fig. 5 and Appendix A). The effectiveness of the
model, and of the validation exercise itself, is then assessed
by comparing this difference with the experimental confi-
dence interval, as in Fig. 6. For example, the simulation error
exceeds the 90% confidence interval at the largest x values,
where the confidence intervals are relatively small, suggest-
ing that future model improvements would be most profit-
ably focused on this regime. In contrast, the confidence in-
tervals are relatively large for small to medium values of x,
preventing the trend predicted by the simulation in Fig. 5
from being tested. The conclusion of the exercise would then
be that more experiments and/or more precise measurements
are needed in this regime. Once a model has demonstrated its
effectiveness over a range of x, the next level of comparison
is to compute a global metric by averaging the relative de-
viations and confidence intervals over x. This process and the
result are described in Appendix B. This simple metric
makes provisions for statistical error but not for systematic
error. Possibilities for treating the latter are mentioned below
in conjunction with composite metrics.

2. Comparisons involving simple metrics

Validating models is often aided by comparing codes
with different approximation schemes. Methods for the trans-
parent display of such comparisons have been devised, par-
ticularly where there is a large number of models. An ex-
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FIG. 6. (Color online) Comparison of the expectation value of the average
error between the experimental and simulated data (in blue) with the 90%
confidence interval (in red).

ample is the Taylor diagram17 which is used in climate
modeling to assess the relative performance of general circu-
lation models across many climatological measures. In a fu-
sion context the Taylor diagram can be used to compare
modeled profiles with experimental observation across a va-
riety of models, parameterization schemes, and diagnostic
techniques; and for different profiles. In the Taylor diagram,
functions describing the variation of a quantity across some
domain are represented by a point on a 2D polar plot.17 One
point is designated as a reference. It may be one model in a
comparison between many models. If models are being com-
pared to experimental observation for validation, the experi-
mental results provide a sensible reference. The radial posi-
tion of each point on the Taylor diagram gives the standard
deviation of the function about its mean value. The angular
position, as measured from the horizontal axis, is cos™' R,
where R is the correlation coefficient between the reference
function and the model function. The rms difference with the
reference is the distance between a model point and the ref-
erence point. Because it is a simple function of the other two
quantities, it is not an independent quantity. The reduction of
profiles to a point allows a single diagram to display the
comparison of many different models, variations of inputs
associated with uncertainties, or even different measures (re-
flecting differences across the primacy hierarchy).

A simple example of a Taylor diagram for fusion com-
parisons is given in Fig. 7. This figure shows a tabulation of
the variation of correlation length with minor radius for a set
of discharges, labeled “Ref,” and four models—a neoclassi-
cal ion temperature gradient (ITG) model, two slab ITG
models, and a toroidal ITG model. The information has been
extracted from Fig. 3 of Ref. 18. Because the Taylor diagram
of Fig. 7 is a variation of the diagram as described in Ref. 17
we provide the details of the differences. In Fig. 7 standard
deviations are normalized to their respective means in the
radial axis of the plot. If r, are the discrete values of the
reference, e.g., values of a measure at different radial posi-
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FIG. 7. (Color online) Taylor diagram for Fig. 3 of Rhodes ef al. (Ref. 18)
which displays the closeness of ion temperature gradient models to experi-
ment (labeled Ref). In this polar plot the radial variable is standard deviation
normalized to the mean and the angle (measured from the horizontal axis) is
the inverse cosine of the correlation coefficient.

tions, and f, are the corresponding values generated by a
computed model, the correlation coefficient R is defined as

1 N
=]T,E (fn_f)(rn_F)/Ufo-r' (1)
n=1

Here ]_‘ and 7 are the mean values and oy and o, are the
standard deviations of f and r. The radial distance from each
point to the origin is 6= o'f/J7 (6,=0,/T in the case of the
reference). The angle, measured from the horizontal axis is
cos™! R. The distance between the reference point and each
model point is the rms deviation,

N —_
s Uu=1)
Nl‘l=1 f r

_ 12
(rn_r)

- . (2)

E=

A scale for the rms deviation is often placed on the Taylor
diagram as concentric arcs centered on the reference point.
These are the broken arcs in Fig. 7. The relationship among
the correlation coefficient, the rms deviation between refer-
ence and model, and the standard deviation is simply the law
of cosines, E2= 6‘?+ 6’3—2&f&,R.

This figure reduces the fidelity of models to single points
and allows a rapid assessment to guide refinements in mod-
eling. At a glance it is evident from Fig. 7 that the toroidal
ITG comes closest to the normalized standard deviation and
has the lowest rms difference. One of the slab ITG models
has the poorest performance in these areas. All of the models
have a high value of the correlation coefficient. This indi-
cates that correctly capturing the decrease of radial correla-
tion with minor radius is not particularly challenging for
models, and therefore is not a particularly stringent quantita-
tive test.

Phys. Plasmas 15, 062503 (2008)

3. Composite metrics

As discussed earlier, construction of multiple validation
metrics at various levels on the primacy hierarchy is very
important to give confidence in the overall validation. There-
fore, after constructing individual validation metrics, a quan-
titative assessment of the effect of primacy hierarchy, sensi-
tivity, and qualification, and their factorization into a
composite validation metric, is the next important step. There
is additional rationale for introducing the primacy hierarchy,
sensitivity, and qualification into a metric. While it is
straightforward to combine multiple but independent mea-
sures of the same quantity, it is less obvious how to combine
measures of different quantities. Primacy level, sensitivity,
and qualification, as weights in a combination of measures,
provide a method.

The primacy hierarchy and sensitivity have not been
widely addressed, and there is little guidance available for
using them in metrics. For this reason we focus on them
here. Ratings for these aspects of a comparison can be incor-
porated into a confidence level or skill score.'> As an ex-
ample of this type of rating we consider a composite valida-
tion metric. The construct we offer is admittedly nonunique
and other composite metrics can be constructed that are
equally valid and might be better suited to some applications.
Our composite metric is therefore meant to illustrate one
possible form, incorporating the minimum elements as a
starting point. The idea is to build an objective, reproducible
validation metric that is a composite of individual metrics
used to validate a model. At the same time, the composite
metric should be constructed to minimize the possibility of
manipulating the metric to some advantage, either by chance
or design. The composite metric will be constructed from an
additive combination of individual metrics weighted by their
position in the primacy hierarchy and their sensitivity to pa-
rameters. This will allow an overall assessment of goodness
of validation consistent with the notion that multiple mea-
sures across the primacy hierarchy yield a higher grade of
validation.

The composite metric is the sum of weighted metrics
from individual measures. The sum allows higher scores for
validation exercises combining larger numbers of compari-
sons with experiment (or other models). The sum is ex-
pressed as

M= BPS W, (3)
; 10
where B; is a normalized rating of the goodness of an indi-
vidual measure, P; is a normalized value on the primacy
hierarchy, S; is a normalized sensitivity, and W; is a repetition
weight. The rating B; is normalized to a scale of 0-1, with
values near O representing a comparison with large discrep-
ancies, errors, and uncertainties, etc., and 1 representing a
faultless comparison. Alternatively, this quantity could rep-
resent a binary scoring scheme with O as fail and 1 as pass. It
could also be a normalized Bayes factor. The primacy rating
P; is normalized to a scale of 1-5, with 5 corresponding to a
measure at the lowest level of a primacy hierarchy (least
integration) and 1 at the highest level. The sensitivity weight
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S; ranges between 1 and 2, with 1 corresponding to a mea-
sure with the lowest sensitivity, and 2 a measure with the
highest sensitivity. The repetition weight W; prevents mul-
tiple measures of a repetitive nature on the same primacy
level from artificially raising the score of a summed quantity
by virtue of sheer repetition. For repeated measures, the first
measure is weighted W =1, the second W,=0.5, the third
W53=0.25, and the nth W,=(0.5)""'. The summation, in con-
nection with the repetition weight, obviously rewards diver-
sified measures. An example of repeated measures is fluctua-
tion measurements taken at the same location but at different
times in a stationary state, or from different shots. Measure-
ments of a fluctuation at different radial locations, represent-
ing different parameters and regimes, would not be consid-
ered repeated. The unbounded composite score M rises with
the number of such measures. The higher the score, the
higher the skill level of the model. Experience will show
how large M, might become, but we anticipate on the basis
of the types of comparisons that have been done, that a score
of 1 or lower would be considered poor, scores in the range
of 1-5 would be considered reasonable, and scores above 10
would be considered good.

Because it is possible that inclusion of a sufficiently
large number of poorly agreeing measures could result in a
good score, a second metric,

- 1
M,=~-2, B.PS;W,—, (4)
n- 10

is needed to exclude that possibility. Since this is the average
of the validation metrics, multiple poor scores give a poor
average. Therefore it can be interpreted that a score below
0.3 is considered poor, a score in the range of 0.3-0.7 is
considered reasonable, and a score above 0.7 is considered
good. Like the first metric, this metric is also susceptible to
the possibility of yielding an artificially good score. For the
second metric, selecting only a single measure of outstanding
quality could produce a good score. However this selection
would not produce a good score in the first metric. Conse-
quently both metrics must be considered jointly. The two
metrics can be combined as components of a final metric
vector V=(M,,M,), with a high score on both needed for
confidence in the validation. Composite metrics like the one
described above clearly involve some discretion as to their
design and application. They have not been tested in actual
comparisons of models and experiments, but as this happens,
we expect that the process of trial and error will suggest
ways to further develop, modify and refine composite
metrics.

The sample composite metric introduced here could eas-
ily be modified to include inputs assessing qualification, fol-
lowing the pattern used for primacy hierarchy and sensitivity.
For example, a new factor could be inserted that lowers
the metric as model parameters move away from a region
of validity. Systematic error might be treated in a similar
fashion. However, it has also been argued that systematic
errors should be transformed into precision errors that can
be handled statistically through design of validation
experiments.16 A measurement of some physical process re-
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peated on multiple facilities (with differences in systematic
effects) might accomplish this. Multiple diagnostics might
also have this effect for systematic errors residing in the
diagnostic process.

Validation metrics have been emphasized in this paper
because of their unfamiliarity. It is important to bear in mind
that they are an engineered construct designed as an analysis
tool to make comparisons between models and experiment
more quantitative and objective. As a means to the end of
doing good physics, exercises in constructing and comparing
metrics should not obscure or replace the end itself.

IV. BUILDING A CULTURE OF VALIDATION

In the past, questions of code fidelity have been narrowly
viewed as the exclusive province and responsibility of mod-
elers. The temptation to apply this attitude to validation
wholly misunderstands what validation means and repre-
sents. Validation can only be carried out through a close
interaction between experiment, theory, and modeling, with
all sides actively participating in a coordinated fashion.
Moreover, modeling will play such an important role in de-
signing and executing fusion discharges that a validated pre-
dictive model could be said to be the end product of the
expertise and understanding of the U.S. fusion sciences effort
over the next decade or so. Achieving this product will re-
quire building a culture of validation.

The close coordination between experiment, theory, and
modeling will mean that validation campaigns are conceived,
designed, and executed as joint exercises between experi-
mental observation and model solution. It is understood that
codes subjected to this validation activity will have been first
rigorously verified. The joint nature of the exercise will en-
sure that units, conventions, and definitions used in modeling
and experiment are equivalent. The experiments will be con-
ceived and designed as a hierarchy progressing from sim-
plest physics and geometry to more complicated cases. Ex-
periments executed for validation will not likely showcase
fusion performance for the device. Nonetheless they must be
incorporated in long term planning. Their importance must
be recognized and promoted from the highest levels of man-
agement, and runtime must be allocated accordingly. The
design of experiments must account for the outcomes of code
qualification, the assessment of uncertainties and deficien-
cies, the primacy hierarchy, the sensitivity landscape, and the
way the validation metric will be applied. These procedures
not only evaluate the realities of accuracy, resolution, re-
gimes, parameter ranges, quantities measured and in what
way, but they will dictate choices made when options are
available. It will be important to operate the codes in a pre-
dictive mode, well ahead of the experiment. Blind and
double blind comparisons should become the norm. Trans-
parency in validation activities will help advance physics
understanding, hence full disclosure of difficulties and short-
comings in comparisons should be reported. Healthy scien-
tific skepticism about favorable results should not be held in
abeyance. Indeed, composite validation metrics based on
worst comparisons might be developed as a way of checking
if a single, well supported discrepancy might be enough to
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invalidate the whole basis for a model, even when other
quantities are seemingly predicted with fidelity. It is impor-
tant that this type of activity be recognized and rewarded as
valid and worthwhile for individuals building a career. Jour-
nals are taking note of the crucial nature of verification and
validation. This is exemplified in the recent editorial state-
ment of the Physics of Plasmas," which states that “it is the
policy of Physics of Plasmas to encourage the submission of
manuscripts whose primary focus is the verification and vali-
dation of codes and analytical models aimed at predicting
plasma behavior.” Verification and validation should also be
appropriately represented in meetings and not overlooked in
an invited talk selection.

The design of advantageous validation experiments is
not just a planning question for existing facilities, but is a
community-wide planning question for future facilities and
facilities development. Special experimental conditions can
remove complicating factors, uncertainty, and deficiency.
This will typically require the design and execution of dedi-
cated experiments that systematically scan relevant param-
eters and provide the necessary conditions to facilitate diag-
nostic measurements (e.g., profile and fluctuation data). The
value of a validation experiment will be significantly en-
hanced if simulations and models can reproduce not only
single-point comparisons across the primary hierarchy, but
also the variation and trends with the relevant variables (e.g.,
normalized gyroradius, collisionality, beta, safety factor).
Performing model calculations a priori to help guide the
design of experiments is especially useful for determining
which parametric variations yield the greatest value in terms
of distinguishing and validating models. Such experiments
can probe lower primacy levels and favorably treat sensitiv-
ity. Such conditions can be sought in experiment design and
utilization. For validation purposes experiments should be
sought that offer simplified geometry or magnetic topology,
that freeze key quantities that otherwise vary, that set param-
eters in regimes of simpler physics, that integrate fewer dis-
parate effects, or that provide enhanced diagnostic access
and capability. The same kind of strategically opportunistic
thinking can be applied to diagnostics and analysis tech-
niques. Diagnostic developments that increase sensitivity,
improve resolution, access new spectral regimes, allow mea-
surement of more fluctuating fields, retain and utilize phase
data, etc., will enhance validation. Analysis techniques that
can expand experimental access to different levels in the pri-
macy hierarchy or modify sensitivity, such as, bispectral de-
convolution analysi520 and fractional derivatives,21 are also
valuable.

V. CONCLUSION: BEST PRACTICES
IN MODEL ASSESSMENT

Validation is designed to confront the challenges and po-
tential limitations intrinsic to numerical modeling of highly
complex, nonlinear physical systems. In magnetically con-
fined fusion plasmas there are severe constraints and difficul-
ties associated with limitations in measurement capability,
strong sensitivities in physical behavior, and extreme de-
mands on modeling that have lead to an array of physically
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distinct, nonoverlapping models. To handle these challenges,
validation approaches have been described herein. Some of
these form part of the standard canon of validation. Others
have been introduced, emphasized, or modified here, includ-
ing the primacy hierarchy, sensitivity analysis, and the com-
posite validation metric. In the practice of fusion modeling,
validation is presently an ideal, not a reality. Indeed, the
necessary coordination between experiment, modeling and
theory; the desirability of designing and conceiving experi-
ments expressly for validation; and the need for objective
assessment, make validation an activity of the whole of the
fusion research enterprise, not merely the part devoted to
modeling. It is not likely that significant new funding will
permit a separate validation industry running in parallel with
existing experimental and modeling efforts. However, be-
cause the types of challenges in fusion validation are
strongly rooted in physics, validation can become an intrinsic
part of how magnetic fusion research is carried out, as sug-
gested in the prior section.

The shift to a culture of validation will not occur instan-
taneously. Stimulus for making such changes will gain mo-
mentum as validation efforts become more widespread. To
that end we recommend that the following four steps be
implemented and documented publicly.

Step 1: Qualification—Describe the assumptions going
into a model and its region of applicability. The more explic-
itly the region is defined (even including conditions outside
the region) the better.

Step 2: Verification—Describe steps taken to ensure
proper solution of the numerical model. At the minimum this
should include convergence tests in time, space, and particle
number.

Step 3: Validation Part [—Construct and describe a pri-
macy hierarchy and validation metrics for the model and its
validation with experiment. Do sensitivity analysis. Calcu-
late the validation metrics, explaining, if possible, the phys-
ics behind disagreements and agreements.

Step 4: Validation Part II—Construct a composite metric
and quantify its “goodness.” Show that the problem range is
in the qualified region (or, if not, explain why this is reason-
able).

Following these steps will foster confidence in validation
efforts. It will ensure proper use of models, and through pub-
lic documentation, will reduce the possibility that a model is
used outside its range of applicability. As these activities
become more widespread a better picture will emerge of
matters like the sensitivity landscape and the primacy hierar-
chy, and how they affect validation. This, in turn, will drive
refinements in the use and implementation of validation met-
rics, and their interpretation in prediction.
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APPENDIX A: GLOSSARY OF TERMS
FOR VERIFICATION AND VALIDATION

This list of terms and the associated definitions were
based in part on a similar list in a draft report entitled
“Guidelines for the Validation and Verification procedures”
[P. Strand et al., European Fusion Development Agreement,
Integrated Tokamak Modelling Task Force Report No.
EU-ITM-TF (04)-08], which in turn was adapted from the
AIAA “Guide for the Verification and Validation of Compu-
tation Fluid Dynamics Simulations” (American Institute of
Aeronautics and Astronautics Report No. AIAA G-077-
1983).

Model: A representation of a physical system or process
intended to enhance our ability to understand, predict, or
control its behavior.

Conceptual model: The set of observations, mathemati-
cal modeling data, and mathematical (e.g., partial differen-
tial) equations that describe the physical system. It will also
include initial and boundary conditions.

Qualification: A theoretical specification of the expected
domain of applicability of a conceptual model and/or of ap-
proximations made in its derivation.

Code: A computer program that implements a concep-
tual model. It includes the algorithms and iterative strategies.
Parameters for the code include the number of grid points,
algorithm inputs, and similar parameters, etc.

Uncertainty: A potential error in any phase or activity of
the modeling process that is due to the lack of knowledge.
Uncertainties can arise in the models themselves and/or in
the experimental data used for validation.

Deficiency: A recognizable error in any phase or activity
of modeling and simulation that is not due to lack of knowl-
edge. For example, errors may be introduced by insufficient
spatial or temporal discretization in a simulation or by pro-
gramming bugs in the code.

Verification: The process by which the fidelity of a nu-
merical algorithm with respect to its mathematical model is
established and the errors in its solution are quantified; an
exercise in mathematics and computer science.

Validation: The process of determining the degree to
which a model is an accurate representation of the real world
from the perspective of the intended uses of the model; an
exercise in physics.

Benchmark: A comparison of two codes; does not, by
itself, verify or validate the codes.

Calibration: The process of adjusting numerical or
physical modeling parameters in the computational model
for the purpose of improving agreement with experimental
data.

Measure: Any measurable quantity in experiment for
which the comparable quantity in a model is computed and
compared.

Modeling: The process of construction or modification
of a model simulation: The exercise or use of a model.

Prediction: Use of a code, outside of its previously vali-
dated domain, to foretell the state of a physical system.

Primacy hierarchy: Ranking of a measurable quantity
in terms of the extent to which other effects integrate to set
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the value of the quantity. Assesses ability of measurement to
discriminate between different nonvalidated models.

Regression testing: Repeating a set of previously run
simulation test cases to ensure that intervening code modifi-
cations have not introduced errors into the code.

Sensitivity analysis: The study of how the variation in
the output of a model (numerical or otherwise) can be appor-
tioned, qualitatively or quantitatively, to different sources of
variation.

Validation metric: A formula for objectively quantify-
ing a comparison between a simulation result and experi-
mental data. The metric may take into account errors and
uncertainties in both sets of data as well as other factors such
as the primacy of the quantities being compared. It may be
designed either to test a hypothesis (“which of two models
better matches the data?”) or to determine the accuracy of the
model for the application at hand (“the differences between
the code and experiment lie within the 90% confidence
interval”).

APPENDIX B: SIMPLE VALIDATION METRIC DETAILS

As described in the main text, the simulation-experiment
comparison shown in Fig. 4 consists of experimental data
over a range of x with two or more experiments performed at
each x. The mean experimental result is plotted along with
the 90% confidence interval computed from these results us-
ing the expressions in Ref. 16.

Simulations have been carried out over this same range
of x. The availability of multiple experiments at a given x
allows a more precise characterization of experimental inputs
to the simulation. If a single simulation is to be done, the
mean of these inputs can be used. If a separate simulation
can be carried out for each experimental point, the mean of
the simulation results can be used in the comparison. In the
latter case, a distribution of simulation results about the
mean is also obtained. In some cases, one might wish to
assign a width to the distribution of the simulation results
associated with unknown parameters or due to statistical un-
certainties. To simplify further discussion, we will assume
that in all of these cases, we can determine a mean simula-
tion value ¥, and a variance Ui These are plotted in Fig. 4.
Determining the magnitude of this variance o‘,zn does not nec-
essarily require many (potentially) expensive simulation
runs. Effective techniques for estimating this uncertainty,
e.g., “response surface methodologies,”22 have been devel-
oped for precisely this purpose.

The interpretation of the confidence interval is that the
true experimental mean is in the interval'®

E_’e - AEC[ — ie + A2C1~

In this way, the true error in the simulation result, in the limit
of g, <2, is inferred to be in the interval

(Em - Se) - AECI - (Em - ie) + AECI'

To interpret the resulting data shown in Fig. 4 in a quan-
titative way, we examine the average of the absolute value of
the difference between the experimental mean and the simu-
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lation mean as computed from the distribution of the simu-
lations. One obtains an expectation value of the mean error
as approximately

E(AY,) = max[[2,, -2,

/
N2/ma,,].

This is plotted in Fig. 5 along with the (positive) confidence
interval. This is then the local validation metric.

The effectiveness of the model, and of the validation
exercise itself, can be directly assessed when the data are
presented in this manner. For example, the simulation error
exceeds the 90% confidence interval at the largest x values,
where the confidence intervals are relatively small, suggest-
ing that future model improvements would be most profit-
ably focused on this regime. In contrast, the confidence in-
tervals are relatively large for small to medium values of x,
preventing the trend predicted by the simulation in Fig. 4
from being tested. The upshot of this exercise would then be
that more experiments and/or more precise measurements are
needed in this regime.

A global metric can be computed by normalizing the
mean error by the experimental mean and then averaging

over x,'®
_ —
A3, 1 J)‘mﬂ* J max[[3,, - 2,|,\2/70,,]
— | = b — .
26 Xmax ~ ¥min *min |2€|

To interpret this, we need a corresponding averaged confi-
dence interval,16

AZg | 1 J max d |AS. ¢
s | Tl

E ¢ Xmax ~ ¥min

The result of this computation is a statement along the lines
of “the average relative error is 23% * 15% with 90% con-
fidence.” Initial validation attempts may frequently yield
large values for both the average relative error and confi-
dence intervals. In this case, the global metric is of less ben-
efit than the local metric. Namely, one would use the latter as
an indication of where to best focus future efforts.
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In the case where both the average relative error and
confidence intervals are small, one then needs to consider
whether this level of accuracy is adequate for the intended
applications of the model.
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